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A pond contains t tagged fish and x untagged fish.
(Or, a bucket contains t red and = black marbles.)

We know t, and we want to estimate .

How should we do this?
(1) catch-and-release n fish, and observe T7, the
number of tagged fish caught.

(2) collect n fish, and observe 75, the number of
tagged fish caught.

(3) count N3, the number of fish we must catch-
and-release in order to find k tagged fish.

(4) count Ny4, the number of fish we must
collect in order to find k tagged fish.



How should we compute the estimates for each
method” For all four methods, if k£ out of n fish
were tagged, it seems reasonable that:
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“Reasonable” is nice, but what is “best” (according
to usual statistical standards)?
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e We like unbiased estimates—we want
them to be correct “on the average.”

S0, 1f many people used our estimation method
(independently, on the same lake), the average of
their estimates for  would be (very close to) x.

o We like efficient estimates—Ilittle
variation from one estimate to the next.

If one person estimates 5 and another estimates

2000, that’s a bad sign. (The standard deviation
should be small.)



A common way of choosing a “good” estimate is to
compute the probability (likelihood) of the observed
outcome as a function of x. Call this function L(x).

We then choose as our estimate the value of x that
maximizes L(x)—typically, this amounts to solving
a first-semester calculus problem. This is called ...

... the Maximum Likelihood Estimate (MLE).

(First proposed by Gauss in 1821, and rediscovered
by Fisher in 1922.)



Method (1): 77 has a binomial distribution with
sample size n and success probability p = t—I—LZU
(“success” = catching a tagged fish).

Then if we catch k tagged fish,

L(x) = (Z)pk(l )" xR )T
Solving L'(x) = 0 leads to x = (”T_k) t. (Trust me.)

So the MLE agrees with our “reasonable” estimate.

But it’s not unbiased or efficient. :-(



Method (2): T5 has a hypergeometric distribution
with population size t + x, sample size n, and ¢
special (tagged) fish.

Then if we catch k tagged fish,

()G 2 (t+ 2 —n)!
He) = k(tff)k T+ (ktr—n)

Solving L'(x) = 0 leads to x = (nT_k) t — %

(for most values of £, n, and k).

Again, this is not unbiased, but it’s better ...



Method (3): N3 has a negative binomial
distribution, seeking k successes (tagged fish) with

success probability p = Hix

Then if we catch n total fish,

L) = (17 )= o )

Déja vu! This is basically the same as the likelihood
function for method (1), so the MLE is z = (”T_k) t.

And this time, it is unbiased!

The standard deviation is \/ x(x]:t).



Method (4): N4 has a Polya distribution with
population size t + x and t special (tagged) fish,
seeking k successes.

Then if we catch n total fish,

L(z) = (i) (") 2l (t+ 2 —n)

G0 7 ()l (kta—n)

(Déja vu)?! The MLE is again = = (”T_k) t — %

Not quite unbiased: the mean is (HLl) xr — %

The standard deviation is (tJ%l) \/ x(ﬁt]j(il(;)_kﬂ).



Method (4a): Unbiased, but not the MLE.

The mean of Ny is (tﬁ’jl) k, so we can produce an

unbiased estimate by solving for x:

t+x+1 n—k
k = — 1
( =] > n = ( - )(t—l—)

Compare to our “reasonable” equation: % =
b 49 / 2

The standard deviation is larger by a factor of &,
but the benefit of an unbiased estimate outweighs

the small efficiency penalty:.



Appendix: Finding MLEs
For methods (1) and (3): If L(z) o 2" %(t + )™, let

L(z)=InL(zx)=C+ (n—k)In(z) —nln(t + x).

This is the “log-likelihood function”; L(x) is maximized when L(z) is

maximized. We find
n—=k n

r  t4+2x

L(z) =

which equals zero when z = (”T_k> t.

For methods (2) and (4), L(z) (tf'ngJ(rkar_xn—)‘vz)' Expand and cancel the

factorials to obtain
rx—1)(x—=2)---(k+x—n+1)
(t+z)t+x—1)t+z—-2)--(t+x—n+1)




b
where S(a,b) = Z % Using the midpoint approximation for a definite

integral,

a+b+1/2
S(a,b): 1 L 1 ﬁ/ d_aﬁzln(a—l—b—l—l/Q))
a+1 a+b a+1/2 X &-+'1/2

so the MLE is (approximately) the value of x such that

| x4+ 1/2 | t+x+1/2
nn — 11 .
k+x—n+1/2 t+x—n+1/2

The solution to this equation is x = (”T_k) t— %

The approximation S(a,b) = In (%) is good except when a is small.

This leads to slight innaccuracies for extreme values of n or k, but numerical
solution to L/(a:) = (0 suggests that we shouldn’t lose any sleep over this issue.



