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A pond contains t tagged fish and x untagged fish.
(Or, a bucket contains t red and x black marbles.)

We know t, and we want to estimate x.

How should we do this?
(1) catch-and-release n fish, and observe T1, the

number of tagged fish caught.

(2) collect n fish, and observe T2, the number of
tagged fish caught.

(3) count N3, the number of fish we must catch-
and-release in order to find k tagged fish.

(4) count N4, the number of fish we must
collect in order to find k tagged fish.



How should we compute the estimates for each
method? For all four methods, if k out of n fish
were tagged, it seems reasonable that:
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“Reasonable” is nice, but what is “best” (according
to usual statistical standards)?



• We like unbiased estimates—we want
them to be correct “on the average.”

So, if many people used our estimation method
(independently, on the same lake), the average of
their estimates for x would be (very close to) x.

• We like efficient estimates—little
variation from one estimate to the next.

If one person estimates 5 and another estimates
2000, that’s a bad sign. (The standard deviation
should be small.)



A common way of choosing a “good” estimate is to
compute the probability (likelihood) of the observed
outcome as a function of x. Call this function L(x).

We then choose as our estimate the value of x that
maximizes L(x)—typically, this amounts to solving
a first-semester calculus problem. This is called ...

... the Maximum Likelihood Estimate (MLE).

(First proposed by Gauss in 1821, and rediscovered
by Fisher in 1922.)



Method (1): T1 has a binomial distribution with
sample size n and success probability p = t

t+x
(“success” = catching a tagged fish).

Then if we catch k tagged fish,

L(x) =

(
n

k

)
pk(1 − p)n−k ∝ xn−k(t + x)−n.

Solving L′(x) = 0 leads to x =
(

n−k
k

)
t. (Trust me.)

So the MLE agrees with our “reasonable” estimate.

But it’s not unbiased or efficient. :-(



Method (2): T2 has a hypergeometric distribution
with population size t + x, sample size n, and t
special (tagged) fish.

Then if we catch k tagged fish,
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(for most values of t, n, and k).

Again, this is not unbiased, but it’s better ...



Method (3): N3 has a negative binomial
distribution, seeking k successes (tagged fish) with
success probability p = t

t+x.

Then if we catch n total fish,

L(x) =

(
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)
pk(1 − p)n−k ∝ xn−k(t + x)−n.

Déjà vu! This is basically the same as the likelihood

function for method (1), so the MLE is x =
(

n−k
k

)
t.

And this time, it is unbiased!

The standard deviation is

√
x(x+t)

k .



Method (4): N4 has a Pòlya distribution with
population size t + x and t special (tagged) fish,
seeking k successes.

Then if we catch n total fish,
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Not quite unbiased: the mean is
(

t
t+1

)
x − 1

2.
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Method (4a): Unbiased, but not the MLE.

The mean of N4 is
(
t+x+1
t+1

)
k, so we can produce an

unbiased estimate by solving for x:
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(Compare to our “reasonable” equation: x
t

.
= n−k

k .)

The standard deviation is larger by a factor of t+1
t ,

but the benefit of an unbiased estimate outweighs
the small efficiency penalty.



Appendix: Finding MLEs

For methods (1) and (3): If L(x) ∝ xn−k(t + x)−n, let

L(x) = ln L(x) = C + (n − k) ln(x) − n ln(t + x).

This is the “log-likelihood function”; L(x) is maximized when L(x) is
maximized. We find
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,

which equals zero when x =
(
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)
t.

For methods (2) and (4), L(x) ∝ x! (t+x−n)!
(t+x)! (k+x−n)!

. Expand and cancel the

factorials to obtain
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where S(a, b) =
b∑
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1
a+j . Using the midpoint approximation for a definite

integral,

S(a, b) =
1

a + 1
+ · · · 1

a + b
.
=

∫ a+b+1/2

a+1/2

dx

x
= ln

(
a + b + 1/2

a + 1/2

)
,

so the MLE is (approximately) the value of x such that
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The solution to this equation is x =
(

n−k
k

)
t − 1
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The approximation S(a, b)
.
= ln

(
a+b+1/2
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)
is good except when a is small.

This leads to slight innaccuracies for extreme values of n or k, but numerical
solution to L′(x) = 0 suggests that we shouldn’t lose any sleep over this issue.


